DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Open
DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes reinforcement discovering to improve reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying function is its reinforcement learning (RL) step, which was used to improve the design's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually enhancing both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's geared up to break down complicated questions and reason through them in a detailed manner. This assisted reasoning process enables the model to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation design that can be incorporated into different workflows such as agents, sensible reasoning and data interpretation jobs.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion specifications, allowing effective reasoning by routing queries to the most relevant expert "clusters." This technique permits the model to concentrate on various problem domains while maintaining general efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to simulate the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor design.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous material, and evaluate models against key security requirements. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, develop a limitation boost demand and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Establish consents to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, avoid hazardous material, and examine designs against essential safety criteria. You can execute safety procedures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.
The model detail page offers important details about the design's abilities, rates structure, and implementation standards. You can discover detailed usage instructions, including sample API calls and code snippets for combination. The design supports various text generation jobs, consisting of content production, code generation, and question answering, using its reinforcement learning optimization and CoT reasoning abilities.
The page likewise consists of deployment alternatives and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, pick Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, go into a number of instances (in between 1-100).
6. For Instance type, choose your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service function consents, and encryption settings. For many use cases, the default settings will work well. However, for production deployments, you may wish to evaluate these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the release is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play area to access an interactive interface where you can explore various prompts and adjust model criteria like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal outcomes. For example, content for inference.
This is an exceptional way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play ground offers immediate feedback, helping you comprehend how the design reacts to numerous inputs and letting you tweak your prompts for ideal outcomes.
You can quickly test the model in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a demand to create text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, hb9lc.org built-in algorithms, and prebuilt ML solutions that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical methods: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that finest suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser shows available models, with details like the supplier name and model capabilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card reveals crucial details, consisting of:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the design details page.
The design details page consists of the following details:
- The model name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you deploy the model, it's advised to review the design details and license terms to verify compatibility with your usage case.
6. Choose Deploy to proceed with deployment.
7. For name, utilize the immediately produced name or develop a custom-made one.
- For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the model.
The deployment procedure can take a number of minutes to complete.
When deployment is complete, your endpoint status will change to InService. At this point, the design is all set to accept reasoning requests through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can invoke the design using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To avoid undesirable charges, finish the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations. - In the Managed implementations area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious solutions using AWS services and sped up calculate. Currently, he is focused on establishing techniques for fine-tuning and optimizing the reasoning efficiency of big language models. In his complimentary time, Vivek takes pleasure in hiking, viewing films, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that help consumers accelerate their AI journey and unlock organization worth.