Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
W worldluxuryhousesitting
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 42
    • Issues 42
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Aleisha Claflin
  • worldluxuryhousesitting
  • Issues
  • #42

Closed
Open
Created Jun 02, 2025 by Aleisha Claflin@aleishaclaflinMaintainer

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to assist in the development of reinforcement learning algorithms. It aimed to standardize how environments are defined in AI research study, making released research more quickly reproducible [24] [144] while offering users with a basic interface for connecting with these environments. In 2022, brand-new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for engel-und-waisen.de support learning (RL) research study on computer game [147] using RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to resolve single jobs. Gym Retro offers the capability to generalize between games with similar principles however various appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack understanding of how to even walk, however are offered the objectives of discovering to move and to push the opposing agent out of the ring. [148] Through this adversarial learning process, the agents discover how to adapt to changing conditions. When a representative is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had actually found out how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors in between agents might develop an intelligence "arms race" that could increase a representative's capability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of five OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that learn to play against human players at a high ability level totally through trial-and-error algorithms. Before becoming a team of 5, the very first public demonstration occurred at The International 2017, the annual best championship competition for the game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of real time, which the knowing software was a step in the direction of producing software application that can handle complicated tasks like a surgeon. [152] [153] The system utilizes a form of support learning, as the bots find out in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete team of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert gamers, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 overall video games in a four-day open online competition, wiki.dulovic.tech winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer shows the difficulties of AI systems in multiplayer online fight arena (MOBA) video games and engel-und-waisen.de how OpenAI Five has actually demonstrated the use of deep support learning (DRL) representatives to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device discovering to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It finds out completely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI took on the object orientation problem by using domain randomization, a simulation method which exposes the learner to a range of experiences rather than trying to fit to truth. The set-up for Dactyl, aside from having movement tracking electronic cameras, also has RGB cams to permit the robotic to manipulate an arbitrary things by seeing it. In 2018, OpenAI revealed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might solve a Rubik's Cube. The robot was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of producing gradually more difficult environments. ADR varies from manual domain randomization by not needing a human to specify randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation

The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his associates, and released in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative design of language could obtain world knowledge and procedure long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the follower to OpenAI's original GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with just minimal demonstrative versions at first released to the public. The complete variation of GPT-2 was not immediately released due to issue about prospective misuse, consisting of applications for writing phony news. [174] Some specialists expressed uncertainty that GPT-2 postured a substantial danger.

In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to detect "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the technology to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total version of the GPT-2 language model. [177] Several websites host interactive presentations of various circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue not being watched language designs to be general-purpose learners, shown by GPT-2 attaining cutting edge accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI specified that the full variation of GPT-3 contained 175 billion criteria, [184] two orders of magnitude larger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as few as 125 million parameters were also trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" tasks and might generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing in between English and Romanian, and in between English and German. [184]
GPT-3 drastically improved benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models might be approaching or coming across the basic ability constraints of predictive language models. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately released to the public for issues of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can develop working code in over a lots shows languages, a lot of successfully in Python. [192]
Several concerns with problems, design defects and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has been implicated of emitting copyrighted code, it-viking.ch without any author attribution or license. [197]
OpenAI announced that they would terminate support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar exam with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise read, evaluate or create up to 25,000 words of text, and compose code in all major programs languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained some of the problems with earlier revisions. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has declined to expose numerous technical details and larsaluarna.se stats about GPT-4, such as the exact size of the design. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained cutting edge lead to voice, multilingual, and vision standards, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly helpful for enterprises, startups and developers looking for to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have actually been developed to take more time to think of their actions, resulting in greater accuracy. These models are especially effective in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning design. OpenAI likewise revealed o3-mini, a lighter and much faster version of OpenAI o3. Since December 21, 2024, this design is not available for public usage. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, hb9lc.org security and security researchers had the chance to obtain early access to these designs. [214] The design is called o3 rather than o2 to prevent confusion with telecoms services provider O2. [215]
Deep research study

Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to carry out comprehensive web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to examine the semantic similarity between text and images. It can significantly be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to translate natural language inputs (such as "a green leather bag formed like a pentagon" or "an isometric view of a sad capybara") and create corresponding images. It can produce images of sensible things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded version of the model with more reasonable results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a brand-new basic system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful model much better able to generate images from intricate descriptions without manual prompt engineering and render complex details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can generate videos based upon short detailed prompts [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of produced videos is unknown.

Sora's advancement team called it after the Japanese word for "sky", to symbolize its "limitless innovative potential". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos licensed for that function, however did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it could produce videos up to one minute long. It likewise shared a technical report highlighting the approaches used to train the design, and the design's capabilities. [225] It acknowledged a few of its shortcomings, consisting of struggles replicating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "outstanding", but noted that they must have been cherry-picked and may not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, notable entertainment-industry figures have actually shown considerable interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the technology's capability to create realistic video from text descriptions, citing its potential to reinvent storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had decided to pause strategies for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of varied audio and is also a multi-task design that can perform multilingual speech acknowledgment along with speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can create tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to start fairly but then fall under mayhem the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the web psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI mentioned the tunes "reveal regional musical coherence [and] follow traditional chord patterns" but acknowledged that the songs lack "familiar bigger musical structures such as choruses that repeat" which "there is a significant gap" between Jukebox and human-generated music. The Verge stated "It's highly remarkable, even if the outcomes seem like mushy variations of tunes that might feel familiar", while Business Insider specified "surprisingly, a few of the resulting tunes are memorable and sound genuine". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches machines to discuss toy problems in front of a human judge. The function is to research study whether such a technique may assist in AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of 8 neural network models which are frequently studied in interpretability. [240] Microscope was created to analyze the features that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that supplies a conversational interface that enables users to ask concerns in natural language. The system then reacts with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking